Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Arch Microbiol ; 206(4): 161, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483627

RESUMO

Brazilian biomes are important sources for environmental microorganisms, including efficient metabolic machineries, like actinomycetes. These bacteria are known for their abilities to produce many bioactive compounds, including enzymes with multiple industrial applications. The present work aimed to evaluate lignocellulolytic abilities of actinomycetes isolated from soil and rhizosphere samples collected at Caatinga, Atlantic and Amazon Forest. Laccase (Lac), lignin peroxidase (LiP), manganese peroxidase (MnP) and cellulase were evaluated for their efficiency. These enzymes have an essential role in lignin decomposition, through oxidation of phenolic and non-phenolic compounds, as well as enzymatic hydrolysis of vegetal biomass. In this sense, a total of 173 actinomycetes were investigated. Eleven (11) of them were selected by their enzymatic performance. The actinomycete AC166 displayed some activity in all analysed scenarios in terms of Lac, MnP and LiP activity, while AC171 was selected as the most promising strain, showing the following activities: 29.7 U.L-1 for Lac; 2.5 U.L-1 for LiP and 23 U.L-1 for MnP. Cellulolytic activities were evaluated at two pH conditions, 4.8 and 7.4, obtaining the following results: 25 U.L-1 and 71 U.L-1, respectively. Thermostability (4, 30 and 60 o C) and salinity concentrations (0 to 4 M) and pH variation (2.0 to 9.0) stabilities of the obtained LiP and Lac enzymatic extracts were also verified. The actinomycete strain AC171 displayed an adaptable response in distinct pH and salt profiles, indicating that bacterial LiP was some halophilic type. Additionally, the strain AC149 produced an alkali and extreme halophilic lignin peroxidase, which are promising profiles for their future application under lignocellulosic biomass at bioethanol biorefineries.


Assuntos
Lacase , Lignina , Lignina/metabolismo , Lacase/metabolismo , Oxirredução , Florestas , Brasil
2.
Artigo em Inglês | MEDLINE | ID: mdl-38411933

RESUMO

Lignin peroxidase (LiP) has a good application prospect in lignin degradation, environmental treatment, straw feed, and other industries. However, its application is constrained by the high price and low stability of enzyme preparation. In this study, the Escherichia coli-Bacillus subtilis (E. coli-B. subtilis) shuttle expression vector pHS-cotG-lip was constructed and displayed on the surface of Bacillus subtilis spores. The analysis of enzymatic properties showed that the optimal catalytic temperature and pH of the immobilized LiP were 55 °C and 4.5, respectively. Compared with free LiP (42 °C and pH4.0), the optimal reaction temperature increased by 13 °C. After incubation at 70 °C for 1 h, its activity remained above 30%, while the free LiP completely lost its activity under the same conditions. Adding Mn2+, DL-lactic acid, and PEG-4000 increased the CotG-LiP enzyme activity to 313%, 146%, and 265%, respectively. The recyclability of spore display made the fusion protein CotG-LiP retain more than 50% enzyme activity after four cycles. The excellent recycling rate indicated that LiP displayed on the spore surface had a good application prospect in sewage treatment and other fields, and also provided a reference for the rapid and low-cost immobilized production of enzyme preparations.

3.
J Gen Appl Microbiol ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104982

RESUMO

Bacteria represent an attractive source for the isolation and identification of potentially useful microorganisms for lignin depolymerization, a process required for the use of agricultural waste. In this work, ten autochthonous bacteria isolated from straw, cow manure, and composts were characterized for potential use in the biodelignification of the waste. A comparison of the ability to degrade lignin and the efficiency of ligninolytic enzymes was performed in bacteria grown in media with lignin as a sole carbon source (LLM, 3.5g/L lignin-alkali) and in complex media supplemented with All-Ban fiber (FLM, 1.5g/L). Bacterial isolates showed different abilities to degrade lignin, they decreased the lignin concentration from 7.6 to 18.6% in LLM and from 11.1 to 44.8% in FLM. They also presented the activity of manganese peroxidase, lignin peroxidases, and laccases with different specific activities. However, strain 26 identified as Paenibacillus polymyxa by sequencing the 16S rRNA showed the highest activity of lignin peroxidase and the ability to degrade efficiently lignocellulose. In addition, P. polymyxa showed the highest potential (desirability ≥ 0.795) related to the best combination of properties to depolymerize lignin from biomass. The results suggest that P. polymyxa has a coordinated lignin degradation system constituted of lignin peroxidase, manganese peroxidase, and laccase enzymes.

4.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37777838

RESUMO

The present study was conducted to isolate and identify white rot fungi (WRF) from wood decayed and to determine their ability to produce lignin-modifying enzymes (LMEs), specifically laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), on solid and liquid media supplemented with synthetic dyes namely 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), azure B, and phenol red. A total of 23 isolates of WRF were isolated from decayed wood and identified as eight different species namely Phanerochaete australis, Perenniporia tephropora, Lentinus squarrosulus, Ganoderma australe, Trametes polyzona, Lentinus sajor-caju, Gymnopilus dilepis, and Fomitopsis palustris based on morphological characteristics, DNA sequences of the internal transcribed spacer (ITS) region, and phylogenetic inference. The fungal isolates can be divided into four groups based on the type of LMEs produced, namely A (Lac-LiP-MnP) with 16 isolates, B (Lac-MnP) (three isolates), C (Lac) (three isolates), and D (MnP) (one isolate). This study highlights P. australis (BJ38) as the best producer of Lac and LiP, while L. squarrosulus (IPS72) is the best producer of MnP. The present study is the first reported P. australis as an efficient lignin degrader by demonstrating the highest activity of two important LMEs.


Assuntos
Lignina , Trametes , Lignina/metabolismo , Trametes/metabolismo , Madeira/metabolismo , Filogenia , Lacase/genética , Lacase/metabolismo
5.
Prep Biochem Biotechnol ; : 1-8, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843104

RESUMO

Heterogous expression of lignin peroxidase (LiP) from Phanerochaete chrysosporium was performed in by E. coli prokaryotic expression system, and pure LiP was prepared by washing, refolding, and purification. The enzyme activity was measured by the resveratrol oxidation method. The effects of different chemicals on LiP activity were explored by adding different kinds of metal ions, acids/phenols, and surfactants. The optimal pH and temperature are 4.2 and 40 °C. The single-factor screening experiment showed that adding 1 mM Mn2+, 0.1 mM DL-lactic acid, and 2% PEG-4000 had the best promotion effect on the enzyme activity of recombinant LiP, which was 160.61%, 188.46%, and 247.83%, respectively. Further, the synergistic addition of Mn2+ and PEG-4000 achieved the best enzyme activity promotion effect of 277.51%. In addition, the addition of DL-lactic acid alone could promote LiP activity. However, the co-addition of lactic acid with Mn2+ and PEG-4000 contributed only 247.87%, which indicated that the addition of DL-lactic acid had an inhibitory effect when applied synergistically. For the first time, it was found that PEG-4000 increased LiP enzyme activity obviously and had a synergistic effect with Mn2+, serving as a reference for LiP in studies and applications pertaining to lignin breakdown.

7.
Pol J Microbiol ; 72(2): 117-124, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37218281

RESUMO

Lignin recalcitrance is a key issue in producing value-added products from lignocellulose biomass. In situ biodegradable lignin-modifying enzymes-producing bacteria are considered a suitable solution to lignin biodegradation problems, but exploitation of ligninolytic bacteria is still limited to date. Hence, this study aimed to isolate and characterize potential lignin peroxidase ligninolytic bacteria from decomposing soil, sawdust, and cow dung at Richard Bay, South Africa. The samples were collected and cultured in the lignin-enriched medium. Pure isolated colonies were characterized through 16S rRNA gene sequencing. The ability of the isolates to grow and utilize aromatic monomers (veratryl and guaiacol alcohol) and decolorize lignin-like dyes (Azure B, Congo Red, Remazol Brilliant Blue R) was evaluated. Of the twenty-six (26) bacteria isolates 10 isolates, including Pseudomonas spp. (88%), Enterobacter spp. (8%), and Escherichia coli (4%) were identified as true lignin peroxidase producers. Pseudomonas aeruginosa (CP031449.2) and E. coli (LR025096.1) exhibited the highest ligninolytic activities. These isolates could potentially be exploited in the industry and wastewater treatment as effective lignin degrading agents.


Assuntos
Compostagem , Lignina , Lignina/metabolismo , RNA Ribossômico 16S/genética , África do Sul , Baías , Escherichia coli/genética , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental
8.
J Gen Appl Microbiol ; 68(6): 262-269, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35781262

RESUMO

From the biotechnological point of view, enzymes are powerful tools that help sustain a clean environment in several ways. The enzymatic biodegradation of synthetic dyes is a promising goal since it reduces pollution caused by textile dyeing factory wastewater. Lignin peroxidase (EC 1.11.1.14, LiP) has high redox potential; thus, it is great for application in various industrial fields (e.g., paper- waste treatment and textile dyeing wastewater treatment). In the present study, a LiP from an isolated strain Pleurotus pulmonarius CPG6 (PpuLiP) was successfully purified with a specific activity of 6.59 U mg -1. The enzyme was purified by using three-step column chromatography procedures including DEAE, Sephadex G-75, and HiTrapTM Q FF columns with 17.8-fold purity. The enzyme with a molecular weight of 40 kDa exhibited enhanced pH stability in the acidic range. The activity retention was over 75% at a pH of 3.0 for more than 6 hours. Purified PpuLiP was able to oxidize a variety of substrates including veratryl alcohol, 2,4-DCP, n propanol, and guaiacol. The effect of metal ions on PpuLiP activity was analyzed. The study will provide a ground to decolorize dyes from various groups of PpuLiP. Purified PpuLiP could decolorize 35% Acid blue 25 (AB25), 50% Acid red 129 (AB129), 72% Acid blue 62 (NY3), 85% Acid blue 113 (AB113), 55% Remazol Brilliant blue R (RBBR), and 100% Reactive red 120 (RR120) for 12 hours. Most of the dyes were decolorized, but the heat-denatured enzyme used as negative control obviously did not decolorize the tested dyes. These results indicate that the PpuLiP has potential application in enzyme-based decolorization of synthetic dyes. Keywords: Decolorization; lignin peroxidase; Pleurotus pulmonarius; textile dyes.


Assuntos
Pleurotus , Pleurotus/metabolismo , Biodegradação Ambiental , Corantes/análise , Corantes/química , Corantes/metabolismo , Têxteis , Lacase/metabolismo
9.
Plant Biotechnol J ; 21(2): 302-316, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208023

RESUMO

Microfibres (diameter <5 mm) and textile dyes released from textile industries are ubiquitous, cause environmental pollution, and harm aquatic flora, fauna, animals and human life. Therefore, enzymatic abatement of microfibre pollution and textile dye detoxification is essential. Microbial enzymes for such application present major challenges of scale and affordability to clean up large scale pollution. Therefore, enzymes required for the biodegradation of microfibres and indigo dye were expressed in transplastomic tobacco plants through chloroplast genetic engineering. Integration of laccase and lignin peroxidase genes into the tobacco chloroplast genomes and homoplasmy was confirmed by Southern blots. Decolorization (up to 86%) of samples containing indigo dye (100 mg/L) was obtained using cp-laccase (0.5% plant enzyme powder). Significant (8-fold) reduction in commercial microbial cellulase cocktail was achieved in pretreated cotton fibre hydrolysis by supplementing cost effective cellulases (endoglucanases, ß-glucosidases) and accessory enzymes (swollenin, xylanase, lipase) and ligninases (laccase lignin peroxidase) expressed in chloroplasts. Microfibre hydrolysis using cocktail of Cp-cellulases and Cp-accessory enzymes along with minimal dose (0.25% and 0.5%) of commercial cellulase blend (Ctec2) showed 88%-89% of sugar release from pretreated cotton and microfibres. Cp-ligninases, Cp-cellulases and Cp-accessory enzymes were stable in freeze dried leaves up to 15 and 36 months respectively at room temperature, when protected from light. Use of plant powder for decolorization or hydrolysis eliminated the need for preservatives, purification or concentration or cold chain. Evidently, abatement of microfibre pollution and textile dye detoxification using Cp-enzymes is a novel and cost-effective approach to prevent their environmental pollution.


Assuntos
Biodegradação Ambiental , Celulase , Índigo Carmim , Lacase/metabolismo , Pós , Têxteis , /genética
10.
Biotechnol Lett ; 45(1): 105-113, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400875

RESUMO

OBJECTIVES: Different cultivation conditions and parameters were evaluated to improve the production and secretion of a recombinant Phanerochaete chrysosporium lipH8 gene in Komagataella phaffii (Pichia pastoris). RESULTS: The recombinant lipH8 gene with its native secretion signal was successfully cloned and expressed in Komagataella phaffii (Pichia pastoris) under the control of the alcohol oxidase 1 promoter (PAOX1). The results revealed that co-feeding with sorbitol and methanol increased rLiP secretion by 5.9-fold compared to the control conditions. The addition of 1 mM FeSO4 increased LiP activity a further 6.0-fold during the induction phase. Moreover, the combination of several optimal conditions and parameters yielded an extracellular rLiP activity of 20.05 U l-1, which is more than ten-fold higher relative to standard growth conditions (BMM10 medium, pH 6 and 30 °C). CONCLUSION: Extracellular activity of a recombinant LiP expressed in P. pastoris increased more than ten-fold when co-feeding sorbitol and methanol as carbon sources, together with urea as nitrogen source, FeSO4 supplementation, lower pH and lower cultivation temperature.


Assuntos
Meios de Cultura , Proteínas Fúngicas , Peroxidases , Phanerochaete , Pichia , Proteínas Recombinantes , Metanol/metabolismo , Pichia/crescimento & desenvolvimento , Pichia/metabolismo , Sorbitol/metabolismo , Peroxidases/biossíntese , Peroxidases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Phanerochaete/enzimologia , Phanerochaete/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Meios de Cultura/química
11.
Molecules ; 27(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36500632

RESUMO

The aims of this article were to investigate Bacillus safensis HL3 spore for its capacity to degrade and detoxify indigo carmine and to provide an effective biological agent for the treatment of isatin dye wastewater. Bacillus safensis HL3 spore was found to decolorize indigo carmine by 97% in the presence of acetosyringone within 2 h. Significantly increased activities of spore laccase, intracellular tyrosinase, and lignin peroxidase upon exposure to indigo carmine were observed. The results of RT-qPCR also showed that the expression of laccase gene was significantly increased. The spore has the ability to degrade indigo carmine through oxidization. Furthermore, the pathway by which indigo carmine is degraded was investigated using liquid chromatography-mass spectrometry analysis to identify the biodegradation products. A detailed pathway of indigo carmine degradation by bacterial spores was proposed for the first time. Toxicity tests indicated that the biodegradation products of indigo carmine are non-toxic to Nicotiana tabacum seeds and are less hazardous to human erythrocytes than the original dye. Indigo carmine is a typical recalcitrant dye and severely jeopardizes human health. The results demonstrate the utility of the spore from Bacillus safensis HL3 for the degradation of indigo carmine and simultaneous reduction of its toxicity.


Assuntos
Bacillus , Índigo Carmim , Humanos , Bacillus/metabolismo , Biodegradação Ambiental , Lacase/metabolismo , Corantes/química
12.
Arch Microbiol ; 204(10): 642, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36161364

RESUMO

Aim of this study was to optimize the production of Ligninolytic enzyme for the degradation of complex pollutants present in pulp paper industrial effluent (PPIE). Two ligninolytic enzyme-producing bacterial strains were isolated from PPIE and identified as Bacillus paramycoides strain BL2 (MZ676667) and Micrococcus luteus strains BL3 (MZ676668). The identified bacterial strain Bacillus paramycoides strain BL2 showed optimum production of LiP (4.30 U/ml), MnP (3.38 U/ml) at 72 h of incubation, while laccase (4.43 U/ml) at 96 h of incubation. While, Micrococcus luteus strains BL3 produced maximum LiP (3.98) and MnP (3.85 U/ml) at 96 h of incubation and maximum laccase (3.85 U/ml) at 72 h of incubation, pH 7-8, and temperatures of 30-35 °C. Furthermore, in the presence of glucose (1.0%) and peptone (0.5%) as nutrient sources, the enzyme activity of consortium leads to reduction of lignin (70%), colour (63%) along with COD (71%) and BOD (58%). The pollutants detected in control i.e. 3.6-Dioxa-2,7-disilaoctane, 2-Heptnoic acid,trimethylsilyl ester, 7-Methyldinaphtho [2,1-b,1',2'-d] silole, Hexadeconoic acid, trimethylysilyl ester, Methyl1(Z)-3,3-dipheny.1-4-hexenoale, 2,6,10,14,18,22-Tetracosahexane,2,2-dimethylpropyl(2Z,6E)-10,11epoxy5,6 Dihyrostigmasterol, acetate were completely diminished. The toxicity of PPIE was reduced up to 75%. Hence, knowledge of this study will be very useful for industrial sector for treatment of complex wastewater.


Assuntos
Poluentes Ambientais , Lacase , Bacillus , Biodegradação Ambiental , Ésteres , Glucose , Lacase/metabolismo , Lignina/metabolismo , Micrococcus luteus/metabolismo , Peptonas , Peroxidases/metabolismo , Águas Residuárias/toxicidade
13.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682745

RESUMO

Botryosphaeria spp. are important phytopathogenic fungi that infect a wide range of woody plants, resulting in big losses worldwide each year. However, their pathogenetic mechanisms and the related virulence factors are rarely addressed. In this study, seven lignin peroxidase (LiP) paralogs were detected in Botryosphaeria kuwatsukai, named BkLiP1 to BkLiP7, respectively, while only BkLiP1 was identified as responsible for the vegetative growth and virulence of B. kuwatsukai as assessed in combination with knock-out, complementation, and overexpression approaches. Moreover, BkLiP1, with the aid of a signal peptide (SP), is translocated onto the cell wall of B. kuwatsukai and secreted into the apoplast space of plant cells as expressed in the leaves of Nicotiana benthamiana, which can behave as a microbe-associated molecular pattern (MAMP) to trigger the defense response of plants, including cell death, reactive oxygen species (ROS) burst, callose deposition, and immunity-related genes up-regulated. It supports the conclusion that BkLiP1 plays an important role in the virulence and vegetative growth of B. kuwatsukai and alternatively behaves as an MAMP to induce plant cell death used for the fungal version, which contributes to a better understanding of the pathogenetic mechanism of Botryosphaeria fungi.


Assuntos
Peroxidases , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Virulência/genética
14.
J Hazard Mater ; 431: 128544, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35228075

RESUMO

In this work, lignin peroxidase (LiP) was extracted for the in vitro degradation of a persistent compound (propranolol, PPN). The results showed that 94.2% of PPN was degraded at 30 U L-1 LiP activity and 10 mg L-1 PPN. The PPN degradation rate increased from 33.5% to 94.2% when the veratryl alcohol (VA) concentration varied from 0 to 180 µM, but decreased to 73.1% with further VA addition. This phenomenon confirmed that VA was indispensable, however, it also acted as a competitive inhibitor of PPN oxidation. Computational analysis revealed that the Trp171…iron porphyrin (TRP-FeP) path was responsible for specific substrate (e.g., VA) transformation, and another long-range electron transfer (LRET) path through His-Asp…FeP (HSP-FeP) was discovered for non-specific substrate (e.g., PPN) degradation. These two electron-transfer routes shared one catalytic center, and VA protected the enzyme from H2O2-dependent inactivation. The HSP-FeP path transformed PPN through single electron transfer or H abstraction mechanisms. In addition, hydroxyl radicals generated in the LiP/H2O2 system were involved in the hydroxylation of the PPN intermediates. Possible degradation pathways were deduced using these degradation mechanisms and mass-spectrometry analysis. The multipath degradation mechanism endowed LiP with a remarkable capacity for removing various recalcitrant pollutants in environmental remediation.


Assuntos
Poluentes Ambientais , Propranolol , Catálise , Elétrons , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Oxirredução , Peroxidases/metabolismo
15.
Heliyon ; 8(2): e08865, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35141441

RESUMO

Lignocellulose is the most abundant biomass available on earth, including wood and agricultural wastes such as rice straw, corn cobs, and oil palm empty bunches. The biopolymer content in lignocellulose has a great potential as feedstock for producing industrial raw materials such as glucose, sorbitol, xylose, xylitol, and other pharmaceutical excipients. Currently, scientists and governments agree that the enzymatic delignification method is an environmentally friendly green method to be applied. This review attempts to explain the proper preparation of the enzymes laccase, lignin peroxidase, and manganese peroxidase, as well as the important factors influencing their activity. The recent applications of the enzymes for detoxification of hazardous substances, proper enzyme immobilization technique, and future prospect combination with DESs extraction of lignin are also discussed.

16.
J Genet Eng Biotechnol ; 20(1): 2, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978643

RESUMO

BACKGROUND: Lignin is a complex polymer of phenyl propanoid units found in the vascular tissues of the plants as one of lignocellulose materials. Many bacteria secrete enzymes to lyse lignin, which can be essential to ease the production of bioethanol. Current research focused on the study of ligninolytic bacteria capable of producing lignin peroxidase (LiP) which can help in lignin biodegradation and bioethanol production. Ligninolytic bacterial strains were isolated and screened from the soil samples of Simlipal Biosphere Reserve (SBR), Odisha (India), for the determination of their LiP activity. Enzymatic assay and optimization for the LiP activity were performed with the most potent bacterial strain. The strain was identified by morphological, biochemical, and molecular methods. RESULTS: In this study, a total of 16 bacteria (Simlipal ligninolytic bacteria [SLB] 1-16) were isolated from forest soils of SBR using minimal salt medium containing lignin. Out of the 16 isolates, 9 isolates showed decolourization of methylene blue dye on LB agar plates. The bacterial isolates such as SLB8, SLB9, and SLB10 were able to decolourize lignin with 15.51%, 16.80%, and 33.02%, respectively. Further enzyme assay was performed using H2O2 as substrate and methylene blue as an indicator for these three bacterial strains in lignin containing minimal salt medium where the isolate SLB10 showed the highest LiP activity (31.711 U/mg). The most potent strain, SLB10, was optimized for enhanced LiP enzyme activity using response surface methodology. In the optimized condition of pH 10.5, temperature 30 °C, H2O2 concentration 0.115 mM, and time 42 h, SLB10 showed a maximum LiP activity of 55.947 U/mg with an increase of 1.76 times from un-optimized condition. Further chemical optimization was performed, and maximum LiP activity as well as significant dye-decolourization efficiency of SLB10 has been found in bacterial growth medium supplemented individually with cellulose, yeast extract, and MnSO4. Most notably, yeast extract and MnSO4-supplemented bacterial culture medium were shown to have even higher percentage of dye decolourization compared to normal basal medium. The bacterial strain SLB10 was identified as Bacillus mycoides according to morphological, biochemical, and molecular (16S rRNA sequencing) characterization and phylogenetic tree analysis. CONCLUSION: Result from the present study revealed the potential of Bacillus mycoides bacterium isolated from the forest soil of SBR in producing LiP enzyme that can be evaluated further for application in lignin biodegradation and bioethanol production. Scaling up of LiP production from this potent bacterial strain could be useful in different industrial applications.

17.
Chemosphere ; 292: 133250, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34922975

RESUMO

Different phenolic compounds, including multimeric lignin derivatives in the ß-O-4 form, are among the most prevalent compounds in wastewater, often generated from paper industries. Relatively small concentrations of lignin are hazardous to aquatic organisms and can trigger severe environmental hazards. Herein, we present a predictive toolset to insight the induced toxic hazards prediction, and their Lignin peroxidase (LiP)-assisted degradation mechanism of selected multimeric lignin model compounds. T.E.ST and Toxtree toolset were deployed for toxic hazards estimation in different endpoints. To minimize the concerning hazards, we screened multimeric compounds for binding affinity with LiP. The binding affinity was found to be significantly lower than the reference compound. An Extra precision (XP) Glide score of -6.796 kcal/mol was found for dimer (guaiacyl 4-O-5 guaiacyl) complex as lowest compared to reference compound (-4.007 kcal/mol). The active site residues ASP-153, HIP-226, VAL-227, ARG-244, GLU-215, 239, PHE-261 were identified as site-specific key binding AA residues actively involved with corresponding ligands, forming Hydrophobic, H-Bond, π-Stacking, π-π type interactions. The DESMOND-assisted molecular dynamics simulation's (MDS) trajectories of protein-ligand revealed the considerable binding behavior and attained stability and system equilibrium state. Such theoretical and predictive conclusions indicted the feasibility of LiP assisted sustainable mitigation of lignin-based compounds, and such could be used to protect the environment from the potential hazards posed by recognized similar pollutants.


Assuntos
Poluentes Ambientais , Lignina , Peroxidase , Águas Residuárias , Água
18.
J Biomol Struct Dyn ; 40(14): 6330-6339, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554764

RESUMO

Functional annotation of Trametes villosa genome was performed to search Class II peroxidase proteins in this white-rot fungus, which can be valuable for several biotechnological processes. After sequence identification and manual curation, five proteins were selected to build 3 D models by comparative modeling. Analysis of sequential and structural sequences from selected targets revealed the presence of two putative Lignin Peroxidase and three putative Manganese Peroxidase on this fungal genome. All 3 D models had a similar folding pattern from selected 3 D structure templates. After minimization and validation steps, the best 3 D models were subjected to docking studies and molecular dynamics to identify structural requirements and the interactions required for molecular recognition. Two reliable 3 D models of Class II peroxidases, with typical catalytic site and architecture, and its protein sequences are indicated to recombinant production in biotechnological applications, such as bioenergy.Communicated by Ramaswamy H. Sarma.


Assuntos
Polyporaceae , Trametes , Corantes , Lignina/química , Lignina/metabolismo , Peroxidase , Peroxidases/metabolismo , Polyporaceae/metabolismo , Trametes/genética , Trametes/metabolismo
19.
Front Microbiol ; 12: 755972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966363

RESUMO

Unused pharmaceutical compounds (PhCs) discharged into the aquatic environment have been regarded as emerging pollutants due to potential harmful effects on humans and the environment. Microbial bioremediation is considered as a viable option for their removal from wastewater. The aim of this study was to assess the simultaneous removal of carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP) by previously isolated fungi (Aspergillus niger, Mucor circinelloides, Trichoderma longibrachiatum, Trametes polyzona, and Rhizopus microsporus). The tolerance to PhCs was conducted by tracking the fungal mycelium mat diameters in solid media and its dry biomass in liquid media, at the drug concentration range of 0.1 to 15 mg/L. The fungal enzymatic activities were determined for lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), respectively. The PhC removal efficiency of the fungi was assessed in aerated batch flasks and the drug concentrations and intermediate compounds formation were determined by using SPE-UPLC/MS. A tolerance over 70% was recorded for all the fungi at drug concentration of 0.1 mg/L. Manganese peroxidase was produced by all the fungi with very low amount of LiP, while all the enzymes were produced by T. polyzona. The pH of 4.3, temperature 37 ± 1.5°C and incubation time of 6 days were the optimum parameters for the fungal enzymatic activities. The best removal of CBZ (87%) was achieved by R. microsporus after 10 days. Between 78 and 100% removal of DCF was observed by all the fungi after 24 h, while 98% of IBP was removed after 2 days by M. circinelloides. Only a few intermediate compounds were identified after 3 days and disappeared after 10 days of incubation. This study demonstrated that apart from the basidiomycetes, the ascomycetes and zygomycetes are also producers of ligninolytic enzymes and have the ability to biodegrade emerging pollutants such as PhCs.

20.
Antioxidants (Basel) ; 10(9)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34573078

RESUMO

Lignin biodegradation has been extensively studied in white-rot fungi, which largely belong to order Polyporales. Among the enzymes that wood-rotting polypores secrete, lignin peroxidases (LiPs) have been labeled as the most efficient. Here, we characterize a similar enzyme (ApeLiP) from a fungus of the order Agaricales (with ~13,000 described species), the soil-inhabiting mushroom Agrocybe pediades. X-ray crystallography revealed that ApeLiP is structurally related to Polyporales LiPs, with a conserved heme-pocket and a solvent-exposed tryptophan. Its biochemical characterization shows that ApeLiP can oxidize both phenolic and non-phenolic lignin model-compounds, as well as different dyes. Moreover, using stopped-flow rapid spectrophotometry and 2D-NMR, we demonstrate that ApeLiP can also act on real lignin. Characterization of a variant lacking the above tryptophan residue shows that this is the oxidation site for lignin and other high redox-potential substrates, and also plays a role in phenolic substrate oxidation. The reduction potentials of the catalytic-cycle intermediates were estimated by stopped-flow in equilibrium reactions, showing similar activation by H2O2, but a lower potential for the rate-limiting step (compound-II reduction) compared to other LiPs. Unexpectedly, ApeLiP was stable from acidic to basic pH, a relevant feature for application considering its different optima for oxidation of phenolic and nonphenolic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...